If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1n^2+(27n)-12=0
We add all the numbers together, and all the variables
n^2+27n-12=0
a = 1; b = 27; c = -12;
Δ = b2-4ac
Δ = 272-4·1·(-12)
Δ = 777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{777}}{2*1}=\frac{-27-\sqrt{777}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{777}}{2*1}=\frac{-27+\sqrt{777}}{2} $
| 60=1/4g+12 | | 4(x-4)=-60 | | 6k-3-2k=k-2 | | x–56,409=240,021 | | 32=2w+13 | | 197=22-x | | x/9=2.5 | | 4-3/10-(22/5x+51/2)=1/2(-33/5x+11/5 | | 189=68-v | | 9(x-2)=2(x+4) | | 3x-9+4=0 | | (5/2)*x=80 | | 20=3u-1 | | 20=7u-1 | | 20=-4u-1 | | 2(-6y+7)−9y=14 | | 3t+12=0 | | 20=-5u-1 | | 5x+44=-1 | | 2/3x+4/3=10/3 | | 32/b=87.5/100 | | 52=4u-12 | | -3k-19k-2k+-19=5 | | 2x-4/39=x+6/24 | | -9.5x+0.68=-3.12 | | (2x+3)²+(x-7)²=(5x+2) | | -9.5x+0.68=3.12 | | 34-v=171 | | 5x+3x=5x=18 | | k/8+9=20 | | 2(p+5)=37-p | | z/6+3=-53 |